Embarrassingly Easy Document-Level MT Metrics: How to Convert Any Pretrained Metric Into a Document-Level Metric
Abstract: We hypothesize that existing sentence-level machine translation (MT) metrics become less effective when the human reference contains
ambiguities. To verify this hypothesis, we present a very simple method for extending pretrained metrics to incorporate context at the document level. We apply our method to three popular metrics, BERTScore, Prism, and COMET, and to the reference-free metric COMET-QE. We evaluate the extended metrics on the WMT 2021 metrics shared task using the provided MQM annotations. Our results show that the extended metrics outperform their sentence-level counterparts in about 85% of the tested conditions when excluding results on low-quality human references. Additionally, we show that our document-level extension of COMET-QE dramatically improves its accuracy on discourse phenomena tasks, outperforming a dedicated baseline by up to 6.1%. Our experimental results support our initial hypothesis and show that a simple extension of the metrics permits them to take advantage of context to resolve ambiguities in the reference.
0 Replies
Loading