Abstract: Vision foundation models have demonstrated vast potential in achieving generalist medical segmentation capability, providing a versatile, task-agnostic solution through a single model. However, current generalist models involve simple pre-training on various medical data containing irrelevant information, often resulting in the negative transfer phenomenon and degenerated performance. Furthermore, the practical applicability of foundation models across diverse open-world scenarios, especially in out-of-distribution (OOD) settings, has not been extensively evaluated. Here we construct a publicly accessible database, MedSegDB, based on a tree-structured hierarchy and annotated from 129 public medical segmentation repositories and 5 in-house datasets. We further propose a Generalist Medical Segmentation model (MedSegX), a vision foundation model trained with a model-agnostic Contextual Mixture of Adapter Experts (ConMoAE) for open-world segmentation. We conduct a comprehensive evaluation of MedSegX across a range of medical segmentation tasks. Experimental results indicate that MedSegX achieves state-of-the-art performance across various modalities and organ systems in in-distribution (ID) settings. In OOD and real-world clinical settings, MedSegX consistently maintains its performance in both zero-shot and data-efficient generalization, outperforming other foundation models. MedSegX is a vision foundation model for open-world medical image segmentation, and its accompanying dataset covers a large number of segmentation tasks across 39 organs and tissues.
External IDs:doi:10.1038/s41551-025-01497-3
Loading