Towards Arbitrarily Expressive GNNs in O(n) Space by Rethinking Folklore Weisfeiler-Lehman

Published: 01 Jan 2023, Last Modified: 28 Sept 2024CoRR 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Message passing neural networks (MPNNs) have emerged as the most popular framework of graph neural networks (GNNs) in recent years. However, their expressive power is limited by the 1-dimensional Weisfeiler-Lehman (1-WL) test. Some works are inspired by $k$-WL/FWL (Folklore WL) and design the corresponding neural versions. Despite the high expressive power, there are serious limitations in this line of research. In particular, (1) $k$-WL/FWL requires at least $O(n^k)$ space complexity, which is impractical for large graphs even when $k=3$; (2) The design space of $k$-WL/FWL is rigid, with the only adjustable hyper-parameter being $k$. To tackle the first limitation, we propose an extension, $(k,t)$-FWL. We theoretically prove that even if we fix the space complexity to $O(n^k)$ (for any $k\geq 2$) in $(k,t)$-FWL, we can construct an expressiveness hierarchy up to solving the graph isomorphism problem. To tackle the second problem, we propose $k$-FWL+, which considers any equivariant set as neighbors instead of all nodes, thereby greatly expanding the design space of $k$-FWL. Combining these two modifications results in a flexible and powerful framework $(k,t)$-FWL+. We demonstrate $(k,t)$-FWL+ can implement most existing models with matching expressiveness. We then introduce an instance of $(k,t)$-FWL+ called Neighborhood$^2$-FWL (N$^2$-FWL), which is practically and theoretically sound. We prove that N$^2$-FWL is no less powerful than 3-WL, and can encode many substructures while only requiring $O(n^2)$ space. Finally, we design its neural version named N$^2$-GNN and evaluate its performance on various tasks. N$^2$-GNN achieves record-breaking results on ZINC-Subset (0.059), outperforming previous SOTA results by 10.6%. Moreover, N$^2$-GNN achieves new SOTA results on the BREC dataset (71.8%) among all existing high-expressive GNN methods.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview