Keywords: Large language model, Table reasoning, Multi-modal learning
Abstract: To migrate the remarkable successes of Large Language Models (LLMs), the community has made numerous efforts to extend them to the table reasoning tasks for the widely deployed tabular data. Despite that, in this work, by showing a probing experiment on our proposed StructQA benchmark, we postulate that even the most advanced LLMs (such as GPTs) may still fall short of coping with tabular data. More specifically, the current scheme often simply relies on serializing the tabular data, together with the meta information, then inputting them through the LLMs. We argue that the loss of structural information is the root of this shortcoming. In this work, we further propose **TAMO** which bears an ideology to treat the **ta**bles **a**s **a**n independent **mo**dality integrated with the text tokens. The resulting model in TAMO is a multimodal framework consisting of a hypergraph neural network as the global table encoder seamlessly integrated with the mainstream LLM. Empirical results on various benchmarking datasets, including HiTab, WikiTQ, WikiSQL, FeTaQA, and StructQA, have demonstrated significant improvements with an average relative gain of **42.65%**.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 14078
Loading