Use of a Large Image Repository to Enhance Domain Dataset for Flyer Classification

Published: 01 Jan 2015, Last Modified: 21 Aug 2025ISVC (2) 2015EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: This paper describes our exploratory work on supplementing our dataset of images extracted from real estate flyers with images from a large general image repository to enhance the breadth of the samples and create a classification model which would perform well for totally unseen, new instances. We selected some images from the Scene UNderstanding (SUN) database which are annotated with the scene categories that seem to match with our flyer images, and added them to our flyer dataset. We ran a series of experiments with various configurations of flyer vs. SUN data mix. The results showed that the classification models trained with a mixture of SUN and flyer images produced comparable accuracies as the models trained solely with flyer images. This suggests that we were able to create a model which is scalable to unseen, new data without sacrificing the accuracy of the data at hand.
Loading