Abstract: Author summary As an important type of genomic structural variation, CNVs are associated with complex phenotypes because they change the number of copies of genes in cells, affecting coding sequences and playing an important role in the susceptibility or resistance to human diseases. To identify CNVs, several experimental methods have been developed, but their resolution is very low, and the detection of short CNVs presents a bottleneck. In recent years, the advancement of high-throughput sequencing techniques has made it possible to precisely detect CNVs, especially short ones. Many CNV detection applications were developed based on the availability of high-throughput sequencing data. Due to different CNV detection algorithms, the CNVs identified by different applications vary greatly. Therefore, it is necessary to help investigators choose suitable applications for CNV detection depending upon their objectives. For this reason, we not only compared ten commonly used CNV detection applications but also benchmarked the applications by sensitivity, specificity and computational demands. Our results show that the sequencing depth can strongly affect CNV detection. Among the ten applications benchmarked, LUMPY performs best for both high sensitivity and specificity for each sequencing depth. We also give recommended applications for specific purposes, for example, CNVnator and RDXplorer for high sensitivity and CNVnator and GROM-RD for low-depth sequencing data.
Loading