Bi-level Contrastive Learning for Knowledge Enhanced Molecule Representations

18 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Molecule Representation, Knowledge Graph, Contrastive Learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: In this paper, we introduced \textsc{Gode}, a bi-level self-supervised pre-training and contrastive learning framework, enhancing molecule representation with biomedical domain knowledge for molecular property prediction tasks
Abstract: Molecule representation learning underpins diverse downstream applications such as molecular property and side effect understanding and prediction. In this paper, we recognize the two-level structure of individual molecule as having intrinsic graph structure as well as being a node in a large molecule knowledge graph, and present Gode, a new approach that seamlessly integrates graph representations of individual molecules with multi-domain biomedical data from knowledge graphs. By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, Gode adeptly fuses molecular structures with their corresponding knowledge graph substructures. This fusion results in a more robust and informative representation, enhancing molecular property prediction by harnessing both chemical and biological information. When fine-tuned across 11 chemical property tasks, our model excels beyond existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks. Impressively, it surpasses the current leading model in molecule property predictions with average advancements of 2.1% in classification and 6.4% in regression tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1521
Loading