Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Forward-only learning, Biologically inspired learning, Artificial neural networks, Analytical characterization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We discuss "forward-only" algorithms, provide an analytical characterization and test strategies to improve their performance.
Abstract: "Forward-only" algorithms, which train neural networks while avoiding a backward pass, have recently gained attention as a way of solving the biologically unrealistic aspects of backpropagation. Here, we first address compelling challenges related to the "forward-only" rules, which include reducing the performance gap with backpropagation and providing an analytical understanding of their dynamics. To this end, we show that the forward-only algorithm with top-down feedback is well-approximated by an "adaptive-feedback-alignment" algorithm, and we analytically track its performance during learning in a prototype high-dimensional setting. Then, we compare different versions of forward-only algorithms, focusing on the Forward-Forward and PEPITA frameworks, and we show that they share the same learning principles. Overall, our work unveils the connections between three key neuro-inspired learning rules, providing a link between "forward-only" algorithms, i.e., Forward-Forward and PEPITA, and an approximation of backpropagation, i.e., Feedback Alignment.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 9371
Loading