Approximating Two-Layer ReLU Networks for Hidden State Analysis in Differential Privacy

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Differential privacy, machine learning, hidden state threat model, privacy amplification by iteration, DP-SGD
TL;DR: We propose higher-utility ML models suitable for the hidden state DP analysis and in particular for the disjoint mini-batch DP-SGD
Abstract: The hidden state threat model of differential privacy (DP) assumes that the adversary has access only to the final trained machine learning (ML) model, without seeing intermediate states during training. Current privacy analyses under this model, however, are limited to convex optimization problems, reducing their applicability to multi-layer neural networks, which are essential in modern deep learning applications. Additionally, the most successful applications of the hidden state privacy analyses in classification tasks have been for logistic regression models. We demonstrate that it is possible to privately train convex problems with privacy-utility trade-offs comparable to those of one hidden-layer ReLU networks trained with DP stochastic gradient descent (DP-SGD). We achieve this through a stochastic approximation of a dual formulation of the ReLU minimization problem which results in a strongly convex problem. This enables the use of existing hidden state privacy analyses, providing accurate privacy bounds also for the noisy cyclic mini-batch gradient descent (NoisyCGD) method with fixed disjoint mini-batches. Our experiments on benchmark classification tasks show that NoisyCGD can achieve privacy-utility trade-offs comparable to DP-SGD applied to one-hidden-layer ReLU networks. Additionally, we provide theoretical utility bounds that highlight the speed-ups gained through the convex approximation.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12122
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview