Graph Posterior Network: Bayesian Predictive Uncertainty for Node ClassificationDownload PDF

21 May 2021, 20:49 (modified: 02 Nov 2021, 13:10)NeurIPS 2021 PosterReaders: Everyone
Keywords: Uncertainty, Bayesian rule, Posterior, Graph, Classification
Abstract: The interdependence between nodes in graphs is key to improve class prediction on nodes, utilized in approaches like Label Probagation (LP) or in Graph Neural Networks (GNNs). Nonetheless, uncertainty estimation for non-independent node-level predictions is under-explored. In this work, we explore uncertainty quantification for node classification in three ways: (1) We derive three axioms explicitly characterizing the expected predictive uncertainty behavior in homophilic attributed graphs.(2) We propose a new model Graph Posterior Network (GPN) which explicitly performs Bayesian posterior updates for predictions on interdependent nodes. GPN provably obeys the proposed axioms. (3) We extensively evaluate GPN and a strong set of baselines on semi-supervised node classification including detection of anomalous features, and detection of left-out classes. GPN outperforms existing approaches for uncertainty estimation in the experiments.
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
9 Replies