Event Certifications: logconference.org/LoG/2024/Journal_Track
Abstract: We present a novel edge-level ego-network encoding for learning on graphs that can boost Message Passing Graph Neural Networks (MP-GNNs) by providing additional node and edge features or extending message-passing formats. The proposed encoding is sufficient to distinguish Strongly Regular Graphs, a family of challenging 3-WL equivalent graphs. We show theoretically that such encoding is more expressive than node-based sub-graph MP-GNNs. In an empirical evaluation on four benchmarks with 10 graph datasets, our results match or improve previous baselines on expressivity, graph classification, graph regression, and proximity tasks---while reducing memory usage by 18.1x in certain real-world settings.
Submission Length: Long submission (more than 12 pages of main content)
Video: https://www.youtube.com/watch?v=nlYwZ8FF9vI
Code: https://github.com/nur-ag/ELENE
Assigned Action Editor: ~Giannis_Nikolentzos1
Submission Number: 1844
Loading