Keywords: CNN, pruning, optimization, mutual information, Renyi entropy
Abstract: Convolutional Neural Networks (CNNs) achieve high performance in image classification tasks but are challenging to deploy on resource-limited hardware due to their large model sizes. To address this issue, we leverage Mutual Information, a metric that provides valuable insights into how deep learning models retain and process information by measuring the shared information between input features or output labels and network layers. In this study, we propose a structured filter-pruning approach for CNNs that identifies and selectively retains the most informative features in each layer. Our approach successively evaluates each layer by ranking the importance of its feature maps based on Conditional Mutual Information (CMI) values, computed using a matrix-based Rényi α-order entropy numerical method. We propose several formulations of CMI to capture correlation among features across different layers. We then develop various strategies to determine the cutoff point for CMI values to prune unimportant features. This approach allows parallel pruning in both forward and backward directions and significantly reduces model size while preserving accuracy. Tested on the VGG16 architecture with the CIFAR-10 dataset, the proposed method reduces the number of filters by more than a third, with only a 0.32% drop in test accuracy.
Supplementary Material: pdf
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7628
Loading