Abstract: Aerial insects demonstrate fast and precise heading control when they perform body saccades and rapid escape maneuvers. While insect-scale micro-aerial-vehicles (IMAVs) have demonstrated early results on heading control, their flight endurance and heading angle tracking accuracy remain far inferior to that of natural fliers. In this work, we present a long endurance sub-gram aerial robot that can demonstrate effective heading control during hovering flight. Through using a tilted wing stroke-plane design, our robot demonstrates a 10-second flight where it tracks a desired yaw trajectory with maximum and root-mean-square (RMS) error of 14.2∘ and 5.8o. The new robot design requires 7% higher lift forces for enabling heading angle control, which creates higher stress on wing hinges and adversely influences robot endurance. To address this challenge, we developed novel 3-layered wing hinges that exhibit 1.82 times improvement of lifetime. With the new wing hinges, our robot demonstrates a 40-second hovering flight - the longest among existing sub-gram IMAVs. These results represent substantial improvement of flight capabilities in soft-actuated IMAVs, showing the potential of operating these insect-like fliers in cluttered natural environments.
Loading