Abstract: Label Smoothing is a widely used technique in many areas. It can prevent the network from being over-confident. However, it hypotheses that the prior distribution of all classes is uniform. Here, we decide to abandon this hypothesis and propose a new smoothing method, called Smoothing with Fake Label. It shares a part of the prediction probability to a new fake class. Our experiment results show that the method can increase the performance of the models on most tasks and outperform the Label Smoothing on text classification and cross-lingual transfer tasks.
0 Replies
Loading