Multi-Content Merging Network Based on Focal Loss and Convolutional Block Attention in Hyperspectral Image Classification

Published: 01 Jan 2022, Last Modified: 11 Apr 2025Int. J. Pattern Recognit. Artif. Intell. 2022EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Simultaneous extraction of spectral and spatial features and their fusion is currently a popular solution in hyperspectral image (HSI) classification. It has achieved satisfactory results in some research. Because the scales of objects are often different in HSI, it is necessary to extract multi-scale features. However, this aspect was not taken into account in many spectral-spatial feature fusion methods. This causes the model to be unable to get sufficient features on scales with a large difference range. The model (MCMN: Multi-Content Merging Network) proposed in this paper designs a multi-branch fusion structure to extract multi-scale spatial features by using multiple dilated convolution kernels. Considering the interference of the surrounding heterogeneous objects, the useful information from different directions is also fused together to realize the merging of multiple regional features. MCMN introduces a convolution block attention mechanism, which fully extracts attention features in both spatial and spectral directions, so that the network can focus on more useful parts, which can effectively improve the performance of the model. In addition, since the number of objects in each class is often discrepant, it will have some impact on the training process. We apply the focal loss function to eliminate the negative factor. The experimental results of MCMN on three data sets have a breakthrough compared with the other comparison models, which highlights the role of MCMN structure.
Loading