Group-wise Verifiable Distributed Computing for Machine Learning under Adversarial AttacksDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Adversarial attack, Verifiable computing, Distributed Computing, Coded computing
TL;DR: This paper tackles adversarial attack and straggler effect in distributed computing by proposing Group-wise Verifiable Coded Computing.
Abstract: Distributed computing has been a promising solution in machine learning to accelerate the training procedure on large-scale dataset by utilizing multiple workers in parallel. However, there remain two major issues that still need to be addressed: i) adversarial attacks from malicious workers, and ii) the effect of slow workers known as stragglers. In this paper, we tackle both problems simultaneously by proposing Group-wise Verifiable Coded Computing (GVCC), which leverages coding techniques and group-wise verification to provide robustness to adversarial attacks and resiliency to straggler effects in distributed computing. The key idea of GVCC is to verify a group of computation results from workers at a time, while providing resilience to stragglers through encoding tasks assigned to workers with Group-wise Verifiable Codes. Experimental results show that GVCC outperforms the existing methods in terms of overall processing time and verification time for executing matrix multiplication, which is a key computational component in machine learning and deep learning.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
Supplementary Material: zip
5 Replies

Loading