Steerable Partial Differential Operators for Equivariant Neural NetworksDownload PDF

Published: 28 Jan 2022, Last Modified: 22 Oct 2023ICLR 2022 PosterReaders: Everyone
Keywords: partial differential operators, equivariance, deep learning, steerability
Abstract: Recent work in equivariant deep learning bears strong similarities to physics. Fields over a base space are fundamental entities in both subjects, as are equivariant maps between these fields. In deep learning, however, these maps are usually defined by convolutions with a kernel, whereas they are partial differential operators (PDOs) in physics. Developing the theory of equivariant PDOs in the context of deep learning could bring these subjects even closer together and lead to a stronger flow of ideas. In this work, we derive a $G$-steerability constraint that completely characterizes when a PDO between feature vector fields is equivariant, for arbitrary symmetry groups $G$. We then fully solve this constraint for several important groups. We use our solutions as equivariant drop-in replacements for convolutional layers and benchmark them in that role. Finally, we develop a framework for equivariant maps based on Schwartz distributions that unifies classical convolutions and differential operators and gives insight about the relation between the two.
One-sentence Summary: We present a framework for equivariant partial differential operators, generalizing existing approaches and narrowing the gap between PDOs and convolutions.
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 3 code implementations](https://www.catalyzex.com/paper/arxiv:2106.10163/code)
17 Replies

Loading