Adversarial Inception for Bounded Backdoor Poisoning in Deep Reinforcement Learning

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reinforcement Learning, Poisoning Attacks, Backdoor Attacks, Adversarial Machine Learning
TL;DR: First class of backdoor attacks against DRL with theoretical guarantees of attack success without arbitrarily large reward perturbations
Abstract: Recent works have demonstrated the vulnerability of Deep Reinforcement Learning (DRL) algorithms against training-time, backdoor poisoning attacks. These attacks induce pre-determined, adversarial behavior in the agent upon observing a fixed trigger during deployment while allowing the agent to solve its intended task during training. Prior attacks rely on arbitrarily large perturbations to the agent's rewards to achieve both of these objectives - leaving them open to detection. Thus, in this work, we propose a new class of backdoor attacks against DRL which achieve state of the art performance while minimally altering the agent's rewards. These ``inception'' attacks train the agent to associate the targeted adversarial behavior with high returns by inducing a disjunction between the agent's chosen action and the true action executed in the environment during training. We formally define these attacks and prove they can achieve both adversarial objectives. We then devise an online inception attack which significantly out-performs prior attacks under bounded reward constraints.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8242
Loading