Abstract: Although many AI applications of interest require specialized multi-modal models, relevant data to train such models is inherently scarce or inaccessible. Filling these gaps with human annotators is prohibitively expensive, error-prone, and time-consuming, leading model builders to increasingly consider synthetic data as a scalable alternative. However, existing synthetic data generation methods often rely on manual prompts, evolutionary algorithms, or extensive seed data from the target distribution – limiting their scalability, explainability, and control. In this paper, we introduce Simula: a novel reasoning-driven framework for data generation and evaluation. It employs a seedless, agentic approach to generate synthetic datasets at scale, allowing users to define desired dataset characteristics through an explainable and controllable process, enabling fine-grained resource allocation. We show the efficacy of our approach on a variety of datasets, rigorously testing both intrinsic and downstream properties. Our work (1) offers guidelines for synthetic data mechanism design, (2) provides insights into generating and evaluating synthetic data at scale, and (3) unlocks new opportunities for developing and deploying AI in domains where data scarcity or privacy concerns are paramount.
Submission Type: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Pavel_Izmailov1
Submission Number: 6171
Loading