[RE] Ordered MemoryDownload PDF

29 Dec 2019 (modified: 05 May 2023)NeurIPS 2019 Reproducibility Challenge Blind ReportReaders: Everyone
Abstract: Natural language semantics can be modeled using the phrase-structured model, which can be represented using a tree-type architecture. As a result, recent advances in natural language processing have been made utilising recursive neural networks using memory models that allow them to infer tree-type representations of the input sentence sequence. These new tree models have allowed for improvements in sentiment analysis and semantic recognition. Here we review the Ordered Memory model proposed by Shen et al. (2019) at the NeurIPS 2019 conference, and try to either create baselines that can perform better or create simpler models that can perform equally as well. We found that the Ordered Memory model performs on par with the state-of-the-art models used in tree-type modelling, and performs better than simplified baselines that require fewer parameters.
Track: Baseline
NeurIPS Paper Id: https://openreview.net/forum?id=BJGuY4Sl8r
5 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview