Abstract: Automatic Speech Recognition (ASR) models are deployed in an extensive range of applications. However, recent studies have demonstrated the possibility of adversarial attack on these models which could potentially suppress or disrupt model output. We investigate and verify the robustness of these attacks and explore if it is possible to increase their imperceptibility. We additionally find that by relaxing the optimisation objective from complete suppression to partial suppression, we can further decrease the imperceptibility of the attack. We also explore possible defences against these attacks and show a low-pass filter defence could potentially serve as an effective defence.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Feng_Liu2
Submission Number: 5505
Loading