Discovering and interpreting transcriptomic drivers of imaging traits using neural networksDownload PDFOpen Website

2020 (modified: 04 Nov 2022)Bioinform. 2020Readers: Everyone
Abstract: Cancer heterogeneity is observed at multiple biological levels. To improve our understanding of these differences and their relevance in medicine, approaches to link organ- and tissue-level information from diagnostic images and cellular-level information from genomics are needed. However, these ‘radiogenomic’ studies often use linear or shallow models, depend on feature selection, or consider one gene at a time to map images to genes. Moreover, no study has systematically attempted to understand the molecular basis of imaging traits based on the interpretation of what the neural network has learned. These studies are thus limited in their ability to understand the transcriptomic drivers of imaging traits, which could provide additional context for determining clinical outcomes.
0 Replies

Loading