Keywords: Graph Neural Networks, Label smoothing, Homophily, Heterophily, Node Classification
Abstract: Label smoothing is a widely studied regularization technique in machine learning. However, its potential for node classification in graph-structured data, spanning homophilic to heterophilic graphs, remains largely unexplored. We introduce posterior label smoothing, a novel method for transductive node classification that derives soft labels from a posterior distribution conditioned on neighborhood labels. The likelihood and prior distributions are estimated from the global statistics of the graph structure, allowing our approach to adapt naturally to various graph properties. We evaluate our method on 10 benchmark datasets using eight baseline models, demonstrating consistent improvements in classification accuracy. Our code is available at https://anonymous.4open.science/r/PosteL.
Submission Number: 42
Loading