It Helps to Take a Second Opinion: Teaching Smaller LLMs To Deliberate Mutually via Selective Rationale Optimisation

Published: 22 Jan 2025, Last Modified: 01 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multi-LLM Deliberation, Smaller LLMs, Rationale Generation, Rationale Refinement, Selective Rationale Optimisation, Trainable, Task-Guided Rationale Selection
TL;DR: A trainable framework that facilitates interaction between two distinct Variants of the same LM to preferentially Generate and Refine better rationale choices guided by the end-task.
Abstract: Very large language models (LLMs) such as GPT-4 have shown the ability to handle complex tasks by generating and self-refining step-by-step rationales. Smaller language models (SLMs), typically with < 13B parameters, have been improved by using the data generated from very-large LMs through knowledge distillation. However, various practical constraints such as API costs, copyright, legal and ethical policies restrict using large (often opaque) models to train smaller models for commercial use. Limited success has been achieved at improving the ability of an SLM to explore the space of possible rationales and evaluate them by itself through self-deliberation. To address this, we propose COALITION, a trainable framework that facilitates interaction between two variants of the same SLM and trains them to generate and refine rationales optimized for the end-task. The variants exhibit different behaviors to produce a set of diverse candidate rationales during the generation and refinement steps. The model is then trained via Selective Rationale Optimization (SRO) to prefer generating rationale candidates that maximize the likelihood of producing the ground-truth answer. During inference, COALITION employs a controller to select the suitable variant for generating and refining the rationales. On five different datasets covering mathematical problems, commonsense reasoning, and natural language inference, COALITION outperforms several baselines by up to 5%. Our ablation studies reveal that cross-communication between the two variants performs better than using the single model to self-refine the rationales. We also demonstrate the applicability of COALITION for LMs of varying scales (4B to 14B parameters) and model families (Mistral, Llama, Qwen, Phi). We release the code for this work here.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2371
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview