The Parables of the Mustard Seed and the Yeast: Extremely Low-Budget, High-Performance Nighttime Semantic Segmentation

Published: 26 Feb 2025, Last Modified: 11 Jan 2025OpenReview Archive Direct UploadEveryoneCC BY 4.0
Abstract: Nighttime Semantic Segmentation (NSS) is essential to many cutting-edge vision applications. However, existing technologies overly rely on massive labeled data, whose annotation is time-consuming and laborious. In this paper, we pioneer a new task focusing on exploring the potential of training strategy and framework design with limited annotation to achieve high-performance NSS. Insufficient information at very low labeling budgets can easily lead to under-optimization or overfitting of the model. Our solution comprises two main components: i) a novel region-based active sampling strategy called Contextual-Aware Region Query (CARQ), which identifies highly informative target nighttime regions for labeling; and ii) an innovative Fragmentation Synergy Active Domain Adaptation framework (FS-ADA), which progressively broadcasts the limited annotation to the unlabeled regions, achieving high performance with a minimal annotation budget. Extensive experiments demonstrate that our method outperforms state-of-the-art UDA-NSS & ADA-SS methods across four day-to-nighttime benchmarks, and generalizes well to foggy, rainy, & snowy scenes. In particular only with 1% target nighttime data annotation, our method is on par with the mainstream fully-supervised methods on the BDD100K-Night val dataset.
Loading