Deep ensembles based on Stochastic Activation Selection for Polyp SegmentationDownload PDF

Published: 11 May 2021, Last Modified: 29 Apr 2024MIDL 2021 PosterReaders: Everyone
Keywords: segmentation, convolutional neural network, colonoscopy, deep ensembles
TL;DR: We create an ensemble of networks using multiple activation functions for Polyp segmentation
Abstract: Semantic segmentation has a wide array of applications ranging from medical-image analysis, scene understanding, autonomous driving and robotic navigation. This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations. Several convolutional neural network architectures have been proposed to effectively deal with this task and with the problem of segmenting objects at different scale input. The basic architecture in image segmentation consists of an encoder and a decoder: the first uses convolutional filters to extract features from the image, the second is responsible for generating the final output. In this work, we compare some variant of the DeepLab architecture obtained by varying the decoder backbone. We compare several decoder architectures, including ResNet, Xception, EfficentNet, MobileNet and we perturb their layers by substituting ReLU activation layers with other functions. The resulting methods are used to create deep ensembles which are shown to be very effective. Our experimental evaluations show that our best ensemble produces good segmentation results by achieving high evaluation scores with a dice coefficient of 0.884, and a mean Intersection over Union (mIoU) of 0.818 for the Kvasir-SEG dataset. To improve reproducibility and research efficiency the MATLAB source code used for this research is available at GitHub: https://github.com/LorisNanni.
Paper Type: methodological development
Primary Subject Area: Segmentation
Secondary Subject Area: Application: Endoscopy
Paper Status: original work, not submitted yet
Source Code Url: https://github.com/LorisNanni/Deep-ensembles-based-on-Stochastic-Activation-Selection-for-Polyp-Segmentation
Data Set Url: https://datasets.simula.no/kvasir-seg/
Registration: I acknowledge that publication of this at MIDL and in the proceedings requires at least one of the authors to register and present the work during the conference.
Authorship: I confirm that I am the author of this work and that it has not been submitted to another publication before.
Source Latex: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2104.00850/code)
4 Replies

Loading