Keywords: Optimization for Deep learning, Memory augmented Optimizers
Abstract: Popular approaches for minimizing loss in data-driven learning often involve an abstraction or an explicit retention of the history of gradients for efficient parameter updates.
The aggregated history of gradients nudges the parameter updates in the right direction even when the gradients at any given step are not informative.
Although the history of gradients summarized in meta-parameters or explicitly stored in memory has been shown effective in theory and practice, the question of whether $all$ or only a subset of the gradients in the history are sufficient in deciding the parameter updates remains unanswered.
In this paper, we propose a framework of memory-augmented gradient descent optimizers that retain a limited view of their gradient history in their internal memory.
Such optimizers scale well to large real-life datasets, and our experiments show that the memory augmented extensions of standard optimizers enjoy accelerated convergence and improved performance on a majority of computer vision and language tasks that we considered.
Additionally, we prove that the proposed class of optimizers with fixed-size memory converge under assumptions of strong convexity, regardless of which gradients are selected or how they are linearly combined to form the update step.
One-sentence Summary: We propose a framework of memory augmented optimizers and empirically show that the class of optimizers provide accelerated convergence and even better test performance. We show the proposed optimizers converge in smooth strongly convex setting.
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 3 code implementations](https://www.catalyzex.com/paper/arxiv:2106.10708/code)
9 Replies
Loading