ActionReasoningBench: Reasoning about Actions with and without Ramification Constraints

ICLR 2025 Conference Submission13401 Authors

28 Sept 2024 (modified: 24 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reasoning about Actions and Change (RAC), Benchmark, Large Language Models (LLMs), o1-preview
TL;DR: The paper introduces ActionReasoningBench, a diagnostic benchmark for Reasoning about Actions and Change (RAC) covering novel complex questions and indirect effects of actions, known as ramifications.
Abstract: Reasoning about Actions and Change (RAC) has historically played a pivotal role in solving foundational AI problems, such as the frame problem. It has driven advancements in AI fields, such as non-monotonic and commonsense reasoning. RAC remains crucial for AI systems that operate in dynamic environments, engage in interactive scenarios, or rely on commonsense reasoning. Despite substantial advances made by Large Language Models (LLMs) in various AI domains, their performance in RAC remains underexplored. To address this gap, we introduce a new diagnostic benchmark, $\textbf{ActionReasoningBench}$, which encompasses 8 domains and includes questions for up to 19 action sequences. This benchmark rigorously evaluates LLMs across six key RAC dimensions: $\textit{Fluent Tracking}$, $\textit{State Tracking}$, $\textit{Action Executability}$, $\textit{Effects of Actions}$, $\textit{Numerical RAC}$, and $\textit{Composite Questions}$. LLMs demonstrate average accuracy rates of 73.55%, 65.63%, 58.73%, and 62.38% on the former four dimensions, which are frequently discussed in RAC literature. However, the performance on the latter two dimensions, which introduce complex and novel reasoning questions, the average performance of LLMs is lowered to 33.16% and 51.19%, respectively, reflecting a 17.9% performance decline. We also introduce new ramification constraints to capture the indirect effects of actions, providing deeper insights into RAC challenges. Our evaluation of state-of-the-art LLMs, including both open-source and commercial models, reveals challenges across all RAC dimensions, particularly in handling ramifications, with GPT-4o failing to solve any question and o1-preview achieving a score of only 18.4%.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13401
Loading