Abstract: Adpositions display a remarkable amount of ambiguity and flexibility in their meanings, and are used in different ways across languages. We conduct a systematic corpus-based cross-linguistic investigation into the lexical semantics of adpositions, utilizing SNACS (Schneider et al., 2018), an annotation framework with data available in several languages. Our investigation encompasses 5 of these languages: Chinese, English, Gujarati, Hindi, and Japanese. We find substantial distributional differences in adposition semantics, even in comparable corpora. We further train classifiers to disambiguate adpositions in each of our languages. Despite the cross-linguistic differences in adpositional usage, sharing annotated data across languages boosts overall disambiguation performance, leading to the highest published scores on this task for all 5 languages.
Loading