Attribution of Adversarial Attacks via Multi-task Learning

Published: 01 Jan 2023, Last Modified: 25 Jan 2025ICONIP (2) 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Deep neural networks (DNNs) can be easily fooled by adversarial examples during inference phase when attackers add imperceptible perturbations to original examples. Many works focus on adversarial detection and adversarial training to defend against adversarial attacks. However, few works explore the tool-chains behind adversarial examples, which is called Adversarial Attribution Problem (AAP). In this paper, AAP is defined as the recognition of three signatures, i.e., attack algorithm, victim model and hyperparameter. Existing works transfer AAP into a single-label classification task and ignore the relationship among above three signatures. Actually, there exists owner-member relationship between attack algorithm and hyperparameter, which means hyperparameter recognition relies on the result of attack algorithm classification. Besides, the value of hyperparameter is continuous, hence hyperparameter recognition should be regarded as a regression task. As a result, AAP should be considered as a multi-task learning problem rather than a single-label classification problem or a single-task learning problem. To deal with above problems, we propose a multi-task learning framework named Multi-Task Adversarial Attribution (MTAA) to recognize above three signatures simultaneously. It takes the relationship between attack algorithm and the corresponding hyperparameter into account and uses the uncertainty weighted loss to adjust the weights of three recognition tasks. The experimental results on MNIST and ImageNet show the feasibility and scalability of the proposed framework.
Loading