Point Cloud Segmentation of Agricultural Vehicles using 3D Gaussian Splatting

Published: 06 May 2025, Last Modified: 06 May 2025SynData4CVEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Point Cloud Segementation, Synthetic LiDAR, Gaussian Splatting
TL;DR: We demonstrate the feasibility of using 3D Gaussian Splatting based synthetic data in an agriculutral vehicle case study.
Abstract: Training neural networks for tasks such as 3D point cloud semantic segmentation demands extensive datasets, yet obtaining and annotating real-world point clouds is costly and labor-intensive. This work aims to introduce a novel pipeline for generating realistic synthetic data, by leveraging 3D Gaussian Splatting (3DGS) and Gaussian Opacity Fields (GOF) to generate 3D assets of multiple different agricultural vehicles instead of using generic models. These assets are placed in a simulated environment, where the point clouds are generated using a simulated LiDAR. This is a flexible approach that allows changing the LiDAR specifications without incurring additional costs. We evaluated the impact of synthetic data on segmentation models such as PointNet++, Point Transformer V3, and OACNN, by training and validating the models only on synthetic data. Remarkably, the PTv3 model had an mIoU of 91.35%, a noteworthy result given that the model had neither been trained nor validated on any real data. Further studies even suggested that in certain scenarios the models trained only on synthetically generated data performed better than models trained on real-world data. Finally, experiments demonstrated that the models can generalize across semantic classes, enabling accurate predictions on mesh models they were never trained on.
Submission Number: 42
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview