Accelerated Training of Physics-Informed Neural Networks (PINNs) using Meshless DiscretizationsDownload PDF

Published: 31 Oct 2022, Last Modified: 28 Dec 2022NeurIPS 2022 AcceptReaders: Everyone
Abstract: Physics-informed neural networks (PINNs) are neural networks trained by using physical laws in the form of partial differential equations (PDEs) as soft constraints. We present a new technique for the accelerated training of PINNs that combines modern scientific computing techniques with machine learning: discretely-trained PINNs (DT-PINNs). The repeated computation of the partial derivative terms in the PINN loss functions via automatic differentiation during training is known to be computationally expensive, especially for higher-order derivatives. DT-PINNs are trained by replacing these exact spatial derivatives with high-order accurate numerical discretizations computed using meshless radial basis function-finite differences (RBF-FD) and applied via sparse-matrix vector multiplication. While in principle any high-order discretization may be used, the use of RBF-FD allows for DT-PINNs to be trained even on point cloud samples placed on irregular domain geometries. Additionally, though traditional PINNs (vanilla-PINNs) are typically stored and trained in 32-bit floating-point (fp32) on the GPU, we show that for DT-PINNs, using fp64 on the GPU leads to significantly faster training times than fp32 vanilla-PINNs with comparable accuracy. We demonstrate the efficiency and accuracy of DT-PINNs via a series of experiments. First, we explore the effect of network depth on both numerical and automatic differentiation of a neural network with random weights and show that RBF-FD approximations of third-order accuracy and above are more efficient while being sufficiently accurate. We then compare the DT-PINNs to vanilla-PINNs on both linear and nonlinear Poisson equations and show that DT-PINNs achieve similar losses with 2-4x faster training times on a consumer GPU. Finally, we also demonstrate that similar results can be obtained for the PINN solution to the heat equation (a space-time problem) by discretizing the spatial derivatives using RBF-FD and using automatic differentiation for the temporal derivative. Our results show that fp64 DT-PINNs offer a superior cost-accuracy profile to fp32 vanilla-PINNs, opening the door to a new paradigm of leveraging scientific computing techniques to support machine learning.
Supplementary Material: zip
17 Replies