Diffusion-based Image Translation using disentangled style and content representationDownload PDF

Published: 01 Feb 2023, Last Modified: 25 Nov 2024ICLR 2023 posterReaders: Everyone
Keywords: DDPM, CLIP, Image Translation, ViT
TL;DR: We propose a new method which enables image translation using Denoising Diffusion Probabilistic Model.
Abstract: Diffusion-based image translation guided by semantic texts or a single target image has enabled flexible style transfer which is not limited to the specific domains. Unfortunately, due to the stochastic nature of diffusion models, it is often difficult to maintain the original content of the image during the reverse diffusion. To address this, here we present a novel diffusion-based unsupervised image translation method, dubbed as DiffuseIT, using disentangled style and content representation. Specifically, inspired by the slicing Vision Transformer, we extract intermediate keys of multihead self attention layer from ViT model and used them as the content preservation loss. Then, an image guided style transfer is performed by matching the [CLS] classification token from the denoised samples and target image, whereas additional CLIP loss is used for the text-driven style transfer. To further accelerate the semantic change during the reverse diffusion, we also propose a novel semantic divergence loss and resampling strategy. Our experimental results show that the proposed method outperforms state-of-the-art baseline models in both text-guided and image-guided translation tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Generative models
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 15 code implementations](https://www.catalyzex.com/paper/diffusion-based-image-translation-using/code)
18 Replies

Loading