HiReview: Hierarchical Taxonomy-Driven Automatic Literature Review Generation

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Literature review generation, retrieval-augmented generation, hierarchical graph clustering
Abstract: In this work, we present HiReview, a novel framework for hierarchical taxonomy-driven automatic literature review generation. With the exponential growth of academic documents, manual literature reviews have become increasingly labor-intensive and time-consuming, while traditional summarization models struggle to generate comprehensive document reviews effectively. Large language models (LLMs), with their powerful text processing capabilities, offer a potential solution; however, research on incorporating LLMs for automatic document generation remains limited. To address key challenges in large-scale automatic literature review generation (LRG), we propose a two-stage taxonomy-then-generation approach that combines graph-based hierarchical clustering with retrieval-augmented LLMs. First, we retrieve the most relevant sub-community within the citation network, then generate a hierarchical taxonomy tree by clustering papers based on both textual content and citation relationships. In the second stage, an LLM generates coherent and contextually accurate summaries for clusters or topics at each hierarchical level, ensuring comprehensive coverage and logical organization of the literature. Extensive experiments demonstrate that HiReview significantly outperforms state-of-the-art methods, achieving superior hierarchical organization, content relevance, and factual accuracy in automatic literature review generation tasks. The code and dataset are available at https://anonymous.4open.science/r/HiReivew-767D.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12078
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview