Capture the Key in Reasoning to Enhance CoT Distillation Generalization

ACL ARR 2024 December Submission1510 Authors

16 Dec 2024 (modified: 05 Feb 2025)ACL ARR 2024 December SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: As Large Language Models (LLMs) scale up and gain powerful Chain-of-Thoughts (CoTs) reasoning abilities, practical resource constraints drive efforts to distill these capabilities into more compact Smaller Language Models (SLMs). We find that CoTs consist mainly of simple reasoning forms, with a small proportion ($\approx 4.7\%$) of key reasoning steps that truly impact conclusions. However, previous distillation methods typically involve supervised fine-tuning student SLMs only on correct CoTs data produced by teacher LLMs, resulting in students struggling to learn the key, instead imitating the teacher's reasoning forms and making errors or omissions in reasoning. To address these issues, drawing an analogy to human learning, where analyzing mistakes according to correct solutions often reveals the crucial steps leading to successes or failures, we propose mistak\textbf{E}-\textbf{D}riven key reason\textbf{I}ng step distilla\textbf{T}ion (\textbf{EDIT}), a novel method that further aids SLMs learning key reasoning steps rather than mere simple fine-tuning. Firstly, to expose the crucial steps in CoTs, we carefully design specific prompts to generate dual CoTs data with similar reasoning paths but divergent conclusions. Then, we apply the minimum edit distance algorithm on the dual CoTs data to locate these key steps and optimize the likelihood on these tokens. Extensive experiments and analysis validate the effectiveness of EDIT across both in-domain(IND) and out-of-domain(OOD) benchmark reasoning datasets\footnote{Code can be found at \url{https://anonymous.4open.science/r/eb77sh-F564}}.
Paper Type: Long
Research Area: Special Theme (conference specific)
Research Area Keywords: CoT, Distillation, Large Language Model, Reasoning
Contribution Types: NLP engineering experiment, Approaches low compute settings-efficiency
Languages Studied: English
Submission Number: 1510
Loading