xTED: Cross-Domain Adaptation via Diffusion-Based Trajectory Editing

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Cross-Domain Policy Transfer, Embodied Decision Making, Diffusion Models
TL;DR: xTED offers a novel, generic, flexible, simple and effective paradigm that casts cross-domain policy adaptation as a data pre-processing problem.
Abstract:

Reusing pre-collected data from different domains is an appealing solution for decision-making tasks that have insufficient data in the target domain but are relatively abundant in other related domains. Existing cross-domain policy transfer methods mostly aim at learning domain correspondences or corrections to facilitate policy learning, such as learning domain/task-specific discriminators, representations, or policies. This design philosophy often results in heavy model architectures or task/domain-specific modeling, lacking flexibility. This reality makes us wonder: can we directly bridge the domain gaps universally at the data level, instead of relying on complex downstream cross-domain policy transfer models? In this study, we propose the Cross-Domain Trajectory EDiting (xTED) framework that employs a specially designed diffusion model for cross-domain trajectory adaptation. Our proposed model architecture effectively captures the intricate dependencies among states, actions, and rewards, as well as the dynamics patterns within target data. By utilizing the pre-trained diffusion as a prior, source domain trajectories can be transformed to match with target domain properties while preserving original semantic information. This process implicitly corrects underlying domain gaps, enhancing state realism and dynamics reliability in the source data, and allowing flexible incorporation with various downstream policy learning methods. Despite its simplicity, xTED demonstrates superior performance in extensive simulation and real-robot experiments.

Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8679
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview