Divert More Attention to Vision-Language TrackingDownload PDF

Published: 31 Oct 2022, Last Modified: 12 Mar 2024NeurIPS 2022 AcceptReaders: Everyone
Keywords: Visual Object Tracking, Multimodal Learning, Vision-Language Representation, Asymmetrical Searching Strategy
TL;DR: We explore a different path to achieve SOTA tracking via vision-language multimodal learning instead of complex Transformer.
Abstract: Relying on Transformer for complex visual feature learning, object tracking has witnessed the new standard for state-of-the-arts (SOTAs). However, this advancement accompanies by larger training data and longer training period, making tracking increasingly expensive. In this paper, we demonstrate that the Transformer-reliance is not necessary and the pure ConvNets are still competitive and even better yet more economical and friendly in achieving SOTA tracking. Our solution is to unleash the power of multimodal vision-language (VL) tracking, simply using ConvNets. The essence lies in learning novel unified-adaptive VL representations with our modality mixer (ModaMixer) and asymmetrical ConvNet search. We show that our unified-adaptive VL representation, learned purely with the ConvNets, is a simple yet strong alternative to Transformer visual features, by unbelievably improving a CNN-based Siamese tracker by 14.5% in SUC on challenging LaSOT (50.7%$\rightarrow$65.2%), even outperforming several Transformer-based SOTA trackers. Besides empirical results, we theoretically analyze our approach to evidence its effectiveness. By revealing the potential of VL representation, we expect the community to divert more attention to VL tracking and hope to open more possibilities for future tracking beyond Transformer. Code and models are released at https://github.com/JudasDie/SOTS.
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/arxiv:2207.01076/code)
13 Replies