No Free Lunch Theorem and Black-Box Complexity Analysis for Adversarial Optimisation

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: No Free Lunch Theorem, Black-Box Optimisation, Black-Box Complexity Analysis, Zero-Sum Games
Abstract: Black-box optimisation is one of the important areas in optimisation. The original No Free Lunch (NFL) theorems highlight the limitations of traditional black-box optimisation and learning algorithms, serving as a theoretical foundation for traditional optimisation. No Free Lunch Analysis in adversarial (also called maximin) optimisation is a long-standing problem [45 , 46]. This paper first rigorously proves a (NFL) Theorem for general black-box adversarial optimisation when considering Pure Strategy Nash Equilibrium (NE) as the solution concept. We emphasise the solution concept (i.e. define the optimality in adversarial optimisation) as the key in our NFL theorem. In particular, if Nash Equilibrium is considered as the solution concept and the cost of the algorithm is measured in terms of the number of columns and rows queried in the payoff matrix, then the average performance of all black-box adversarial optimisation algorithms is the same. Moreover, we first introduce black-box complexity to analyse the black-box adversarial optimisation algorithm. We employ Yao’s Principle and our new NFL Theorem to provide general lower bounds for the query complexity of finding a Nash Equilibrium in adversarial optimisation. Finally, we illustrate the practical ramifications of our results on simple two-player zero-sum games. More specifically, no black-box optimisation algorithm for finding the unique Nash equilibrium in two-player zero-sum games can exceed logarithmic complexity relative to search space size. Meanwhile, no black-box algorithm can solve any bimatrix game with unique NE with fewer than a linear number of queries in the size of the payoff matrix.
Primary Area: Algorithmic game theory
Submission Number: 18101
Loading