Abstract: Chart comprehension presents significant challenges for machine learning models due to the diverse and intricate shapes of charts. Existing multimodal methods often over-look these visual features or fail to integrate them effectively for Chart Question Answering. To address this, we introduce CHARTFORMER, a unified framework that enhances chart component recognition by accurately identifying and classifying components such as bars, lines, pies, titles, legends, and axes. Additionally, we propose a novel Question-guided Deformable Co-Attention (QDCAt) mechanism, which fuses chart features encoded by Chart-former with the given question, leveraging the question's guidance to ground the correct answer. Extensive experiments demonstrate a 3.2% improvement in mAP over the baselines for chart component recognition. For ChartQA and OpenCQA tasks, our approach achieves improvements of 15.4% in accuracy and 0.8 in BLEU score, respectively, underscoring the robustness of our solution for detailed visual data interpretation across various applications. 11The source code and dataset are publicly available at https://github.com/VT-NLP/chartQA
Loading