Graph-Based Non-Convex Low-Rank Regularization for Image Compression Artifact ReductionDownload PDFOpen Website

2020 (modified: 17 Nov 2022)IEEE Trans. Image Process. 2020Readers: Everyone
Abstract: Block transform coded images usually suffer from annoying artifacts at low bit-rates, because of the independent quantization of DCT coefficients. Image prior models play an important role in compressed image reconstruction. Natural image patches in a small neighborhood of the high-dimensional image space usually exhibit an underlying sub-manifold structure. To model the distribution of signal, we extract sub-manifold structure as prior knowledge. We utilize graph Laplacian regularization to characterize the sub-manifold structure at patch level. And similar patches are exploited as samples to estimate distribution of a particular patch. Instead of using Euclidean distance as similarity metric, we propose to use graph-domain distance to measure the patch similarity. Then we perform low-rank regularization on the similar-patch group, and incorporate a non-convex l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> enalty to surrogate matrix rank. Finally, an alternatively minimizing strategy is employed to solve the non-convex problem. Experimental results show that our proposed method is capable of achieving more accurate reconstruction than the state-of-the-art methods in both objective and perceptual qualities.
0 Replies

Loading