Keywords: Camera-based tactile sensing, cross-modal tactile data generation
TL;DR: We propose a novel framework for the generation of tactile data using a combination of NeRF and conditional GAN models. Results demonstrate potential to augment existing tactile datasets for downstream task and capability to transfer to a new sensor.
Abstract: Tactile perception is key for robotics applications such as manipulation. However, tactile data collection is time-consuming, especially when compared to vision. This limits the use of the tactile modality in machine learning solutions in robotics. In this paper, we propose a generative model to simulate realistic tactile sensory data for use in downstream tasks. Starting with easily-obtained camera images, we train Neural Radiance Fields (NeRF) for objects of interest. We then use NeRF-rendered RGB-D images as inputs to a conditional Generative Adversarial Network model (cGAN) to generate tactile images from desired orientations. We evaluate the generated data quantitatively using the Structural Similarity Index and Mean Squared Error metrics, and also using a tactile classification task both in simulation and in the real world. Results show that by augmenting a manually collected dataset, the generated data is able to increase classification accuracy by around 10\%. In addition, we demonstrate that our model is able to transfer from one tactile sensor to another with a small fine-tuning dataset.
Student First Author: yes
Supplementary Material: zip
12 Replies
Loading