Keywords: Mixed Multinomial Logits (MMNL), Non-parametric estimation, Statistical learning, Provable algorithms, Sample complexity, Conditional gradient (Frank-Wolfe)
TL;DR: We developed an algorithm that learns a mixture of MNL models with provable guarantees.
Abstract: A mixture of multinomial logits (MMNL) generalizes the single logit model, which is commonly used in predicting the probabilities of different outcomes. While extensive algorithms have been developed in the literature to learn MMNL models, theoretical results are limited. Built on the Frank-Wolfe (FW) method, we propose a new algorithm that learns both mixture weights and component-specific logit parameters with provable convergence guarantees for an arbitrary number of mixtures. Our algorithm utilizes historical choice data to generate a set of candidate choice probability vectors, each being close to the ground truth with a high probability. We further provide a sample complexity analysis to show that only a polynomial number of samples is required to secure the performance guarantee of our algorithm. Finally, we conduct simulation studies to evaluate the performance and demonstrate how to apply our algorithm to real-world applications.
Supplementary Material: pdf
20 Replies
Loading