Learning Mask Invariant Mutual Information for Masked Image Modeling

Published: 22 Jan 2025, Last Modified: 27 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Masked image modeling, Self-supervised learning, Visual pretraining
TL;DR: This paper proposes MI-MAE, a masked image modeling method that learns mask invariant mutual information based on information bottleneck theory.
Abstract: Masked autoencoders (MAEs) represent a prominent self-supervised learning paradigm in computer vision. Despite their empirical success, the underlying mechanisms of MAEs remain insufficiently understood. Recent studies have attempted to elucidate the functioning of MAEs through contrastive learning and feature representation analysis, yet these approaches often provide only implicit insights. In this paper, we propose a new perspective for understanding MAEs by leveraging the information bottleneck principle in information theory. Our theoretical analyses reveal that optimizing the latent features to balance relevant and irrelevant information is key to improving MAE performance. Building upon our proofs, we introduce MI-MAE, a novel method that optimizes MAEs through mutual information maximization and minimization. By enhancing latent features to retain maximal relevant information between them and the output, and minimizing irrelevant information between them and the input, our approach achieves better performance. Extensive experiments on standard benchmarks show that MI-MAE significantly outperforms MAE models in tasks such as image classification, object detection, and semantic segmentation. Our findings validate the theoretical framework and highlight the practical advantages of applying the information bottleneck principle to MAEs, offering deeper insights for developing more powerful self-supervised learning models.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2965
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview