BO-Aug: learning data augmentation policies via Bayesian optimizationDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 16 May 2023Appl. Intell. 2023Readers: Everyone
Abstract: Data augmentation has been an essential technique to increase the amount and diversity of datasets, thus improving deep learning models. To pursue further performance, several automated data augmentation approaches have recently been proposed to find data augmentation policies automatically. However, there are still some key issues that deserve further exploration, i.e., a precise policy search space definition, the instructive policy evaluation method, and the low computational cost of policy search. In this paper, we propose a novel method named BO-Aug that attempts to solve the above issues. Empirical verification on three widely used image classification datasets shows that the proposed method can achieve state-of-the-art or comparable performance compared with advanced automated data augmentation methods, with a relatively low cost. Our code is available at https://github.com/Zhangcx19/BO-Aug .
0 Replies

Loading