MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel MapsDownload PDF

21 May 2021, 20:44 (edited 24 Jan 2022)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: adversarial robustness, robustness transfer, robust pre-training
  • TL;DR: We studied efficient transferability of adversarial robustness.
  • Abstract: Deep neural networks are susceptible to adversarially crafted, small, and imperceptible changes in the natural inputs. The most effective defense mechanism against these examples is adversarial training which constructs adversarial examples during training by iterative maximization of loss. The model is then trained to minimize the loss on these constructed examples. This min-max optimization requires more data, larger capacity models, and additional computing resources. It also degrades the standard generalization performance of a model. Can we achieve robustness more efficiently? In this work, we explore this question from the perspective of knowledge transfer. First, we theoretically show the transferability of robustness from an adversarially trained teacher model to a student model with the help of mixup augmentation. Second, we propose a novel robustness transfer method called Mixup-Based Activated Channel Maps (MixACM) Transfer. MixACM transfers robustness from a robust teacher to a student by matching activated channel maps generated without expensive adversarial perturbations. Finally, extensive experiments on multiple datasets and different learning scenarios show our method can transfer robustness while also improving generalization on natural images.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
16 Replies

Loading