Abstract: Empirical evaluation of the adversarial robustness of deep learning models involves solving non-trivial constrained optimization problems. Popular numerical algorithms to solve these constrained problems rely predominantly on projected gradient descent (PGD) and mostly handle adversarial perturbations modeled by the ℓ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> , ℓ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> , and ℓ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</inf> metrics. In this paper, we introduce a novel algorithmic framework that blends a general-purpose constrained-optimization solver PyGRANSO, With Constraint-Folding (PWCF), to add reliability and generality to robustness evaluation. PWCF 1) finds good-quality solutions without the need of delicate hyperparameter tuning and 2) can handle more general perturbation types, e.g., modeled by general ℓ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</inf> (where p > 0) and perceptual (nonℓ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</inf> ) distances, which are inaccessible to existing PGD-based algorithms.
0 Replies
Loading