PMixUp: Simultaneous Utilization of Part-of-Speech Replacement and Feature Space Interpolation for Text Data AugmentationDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: text augmentation, part-of-speech, feature space interpolation
TL;DR: We propose novel text augmentation method that accomplishes cutting-edge state-of-the-art performance in various benchmark settings.
Abstract: Data augmentation has become a de facto technique in various NLP tasks to overcome the lack of a large-scale, qualified training set. The previous studies presented several data augmentation methods, such as replacing tokens with synonyms or interpolating feature space of given text input. While they are known to be convenient and promising, several limits exist. First, prior studies simply treated topic classification and sentiment analysis under the same category of text classification while we presume they have distinct characteristics. Second, previously-proposed replacement-based methods bear several improvement avenues as they utilize heuristics or statistical approaches for choosing synonyms. Lastly, while the feature space interpolation method achieved current state-of-the-art, prior studies have not comprehensively utilized it with replacement-based methods. To mitigate these drawbacks, we first analyzed which POS tags are important in each text classification task, and resulted that nouns are essential to topic classification, while sentiment analysis regards verbs and adjectives as important POS information. Contrary to the aforementioned analysis, we discover that augmenting verbs and adjective tokens commonly improves text classification performance regardless of its type. Lastly, we propose PMixUp, a novel data augmentation strategy that simultaneously utilizes replacement-based and feature space interpolation methods. We examine that they are new state-of-the-art in nine public benchmark settings, especially under the few training samples.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Supplementary Material: zip
10 Replies

Loading