CNN Kernels Can Be the Best Shapelets

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Shapelet, Covolutional Neural Network, Time-series
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
Abstract: Shapelets and CNN are two typical approaches to model time series. Shapelets aim at finding a set of sub-sequences that extract feature-based interpretable shapes, but may suffer from accuracy and efficiency issues. CNN performs well by encoding sequences with a series of hidden representations, but lacks interpretability. In this paper, we demonstrate that shapelets are essentially equivalent to a specific type of CNN kernel with a squared norm and pooling. Based on this finding, we propose ShapeConv, an interpretable CNN layer with its kernel serving as shapelets to conduct time-series modeling tasks in both supervised and unsupervised settings. By incorporating shaping regularization, we enforce the similarity for maximum interpretability. We also find human knowledge can be easily injected to ShapeConv by adjusting its initialization and model performance is boosted with it. Experiments show that ShapeConv can achieve state-of-the-art performance on time-series benchmarks without sacrificing interpretability and controllability.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: representation learning for computer vision, audio, language, and other modalities
Submission Number: 8442