Keywords: model-based offline reinforcement learning, offline reinforcement learning, lower expectile return
TL;DR: Lower Expectile Q-learning (LEQ) improves model-based value estimation and policy optimization via lower expectile regression of $\lambda$-returns.
Abstract: Model-based offline reinforcement learning (RL) is a compelling approach that addresses the challenge of learning from limited, static data by generating imaginary trajectories using learned models. However, these approaches often struggle with inaccurate value estimation from model rollouts. In this paper, we introduce a novel model-based offline RL method, Lower Expectile Q-learning (LEQ), which provides a low-bias model-based value estimation via lower expectile regression of $\lambda$-returns. Our empirical results show that LEQ significantly outperforms previous model-based offline RL methods on long-horizon tasks, such as the D4RL AntMaze tasks, matching or surpassing the performance of model-free approaches and sequence modeling approaches. Furthermore, LEQ matches the performance of state-of-the-art model-based and model-free methods in dense-reward environments across both state-based tasks (NeoRL and D4RL) and pixel-based tasks (V-D4RL), showing that LEQ works robustly across diverse domains. Our ablation studies demonstrate that lower expectile regression, $\lambda$-returns, and critic training on offline data are all crucial for LEQ.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6179
Loading