HyperDeepONet: learning operator with complex target function space using the limited resources via hypernetworkDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Hypernetwork, Operator learning, Deep operator network, DeepONet
Abstract: Fast and accurate predictions for complex physical dynamics are a big challenge across various applications. Real-time prediction on resource-constrained hardware is even more crucial in the real-world problems. The deep operator network (DeepONet) has recently been proposed as a framework for learning nonlinear mappings between function spaces. However, the DeepONet requires many parameters and has a high computational cost when learning operators, particularly those with complex (discontinuous or non-smooth) target functions. In this study, we propose HyperDeepONet, which uses the expressive power of the hypernetwork to enable learning of a complex operator with smaller set of parameters. The DeepONet and its variant models can be thought of as a method of injecting the input function information into the target function. From this perspective, these models can be viewed as a special case of HyperDeepONet. We analyze the complexity of DeepONet and conclude that HyperDeepONet needs relatively lower complexity to obtain the desired accuracy for operator learning. HyperDeepONet was successfully applied to various operator learning problems using low computational resources compared to other benchmarks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
Supplementary Material: zip
21 Replies

Loading